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Abstract. In this paper we analyze again a transition from the classical to quantum description of bound
charged particles, which involves a substantial modification of the structure of their electromagnetic (EM)
fields related to the well-known fact that bound micro-particles do not radiate in stationary energy states.
We show that a simple exclusion of the radiative component of the EM field produced by bound particles
leads to a violation of the energy-momentum conservation law, if the non-radiative EM field is left un-
modified. In order to restore the energy-momentum conservation, we take a closer look at the interaction
of two hypothetical classical charges with the prohibited radiation component of their EM field and bring
the appropriate modifications in the structure of their bound EM field and, accordingly, in the Hamilton
function of this system. In comparison with the common Hamilton function for the one-body problem,
the electric interaction energy is multiplied by the Lorentz factor of orbiting charged particle, and its rest
mass m is replaced by an effective rest mass parameter, which includes the interaction EM energy. We
introduce, as a novel postulate, these replacements into the Dirac equation for the bound electron and
show that the solution of the modified Dirac-Coulomb equation gives the same gross and fine structure of
energy levels, as the one furnished by the conventional approach, for hydrogenlike atoms. The correction
to spin-spin splitting of 1S-state of hydrogen and heavier atoms is much smaller than nuclear structure
contribution and can be ignored. However, as discussed in part II of this paper, our approach does induce
corrections to the energy levels at the scale of hyperfine interactions, which at once remove a number of
long-standing discrepancies between theory and experiment in the atomic physics.

1 Introduction

As a starting point of our analysis, we remind the well-known classical consent that any accelerated charge must radiate,
and, in particular, both bound (velocity-dependent) and radiating (acceleration-dependent) EM field components do
participate in securing the total momentum conservation law for an isolated system “light charge orbiting around heavy
charge”. In fact, the non-existence of the radiative field component for bound micro-particles (one of Bohr’s postulates)
historically was the first step to the creation of quantum mechanics. Later, with the development of mathematical
apparatus of quantum mechanics and its physical interpretation, it was recognized that the non-applicability of Maxwell
equations to a micro-particle looks quite logical, because for such a particle, we even cannot determine the spatial
coordinates, velocity and acceleration in the classical meaning. Nonetheless, up to now the usual classical charges with
the Maxwellian EM field (representing a composition of non-radiative and free components) are considered as the
immediate precursors of bound micro-particles, and a qualitative difference of their EM fields remains unaccounted
for. A usual way implies that we simply cut off the radiation field component for two interacting charges, but at
the same time, no changes are introduced in the Hamilton function and corresponding Hamiltonian of the system.
However, the energy-momentum conservation law is not fulfilled for interacting hypothetical classical charges, which
produce the non-radiative (bound) EM field only, and thus it seems questionable to leave the Hamilton function of
these charges and its quantum counterpart non-modified.
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Below we suggest a classical prototype of a system of two bound charges, where the energy-momentum conservation
is restored. To accomplish this, we develop a sketch of pure bound field classical electrodynamics (CED), applying
a methodological trick as follows. Let us consider classical charged particles, which compose a bound system due to
Coulomb interaction, and assume that a motion of these particles can be described in a classical way, but at the
same time, a radiation of this system is prohibited. Of course, the Maxwell equations are no longer applicable to
this system, and the theory, describing such classical non-radiative charges, is only approximately applicable to real
classical phenomena. Nonetheless, the simple rules obtained within such a theory to restore the energy-conservation
law in the absence of radiative EM field, occur useful in formulation of an appropriately modified Dirac equation
for the case where the total energy of electron is less than its rest energy (bound state), and in further deducing of
a modified Hamiltonian for the description of real quantum particles in a bound state, which do not generate EM
radiation (sect. 2).

As expected, the equation of motion for charges in pure bound field CED coincides with the corresponding equation
of motion for the usual classical charges in the non-relativistic limit, but, at the same time, contains some corrections
to the accuracy c−2, where c is the light velocity in vacuum. Introducing these corrections into the Dirac equation for
bound electron and deducing the corresponding Hamiltonian, we find that the solution of the modified Dirac-Coulomb
equation gives the same gross and fine structure of the energy levels for hydrogenlike atoms, like in the conventional
approach (sect. 3). In sect. 4 we analyze quantum two-body problem on the basis of the modified Breit equation
without external field and show that such an equation yields the same expression for the Dirac-recoil contribution to
the atomic energy levels, like in the common approach, to the order (Zα)4, where α is the fine-structure constant. In
addition, we show that spin-spin hyperfine interaction for hydrogen and heavier atoms remains practically unchanged
within the approach we developed (sect. 5). Finally, sect. 6 contains a discussion.

2 Pure bound field CED: force law, field equations and equation of motion for the one-body
problem

It is known that the Lagrangian for the system of interacting classical charges represents the sum of three components:
matter part, field part and interaction part (see, e.g., [1]). It is essential that the EM field entering into the Lagrangian
includes the bound and free components, and only their sum obeys the Maxwell equations. The same structure of
EM field is implied in the conservation laws for the isolated system “source charges plus their EM fields”. Hence
any attempt to modify the fields without other appropriate changes in the structure of the theory inevitably leads to
violation of the conservation laws.

Our nearest goal is to determine the appropriate modifications in the structure of classical electrodynamics, where
the EM radiation is prohibited but, at the same time, the energy-momentum conservation law is restored. For our
immediate purpose (derivation of new Hamiltonian for quantum non-radiating particles in a physically reasonable way,
based on the corresponding classical Hamilton function in pure bound field CED), there is no need to develop this
pure bound field theory in all details. Usually in the construction of the Hamilton function, it is sufficient to determine
the momenta of particles and fields, as well as the interaction energy, which in its turn requires that we know the force
law applied to the particles. The constraints in question define the nearest tasks to our research: to determine the
force law, to postulate the field equations and to derive the energy balance equation in a pure bound field CED. The
implementation of these tasks leads us to the solution of the one-body and two-body problems for the bound charge,
orbiting without radiation losses around a host charged particle.

2.1 Force law in pure bound field CED

Due to axiomatic nature of any basic force law, it cannot be deduced in a general way. In this subsection we consider
a particular physical problem, which will help us to postulate the appropriate force law in pure bound CED.

It is well known that the EM field of a classical charged particle is given by the Lienard-Wiechert solution of
Maxwell equations, where the field represents the sum of two components: a velocity-dependent (bound field) one and
an acceleration-dependent (radiative field) one. To the accuracy c−2, the electric field has the form [1]

E ≈
qr

r3

(

1 +
β2

2
−

3(β · r)2

2cr2

)

−
q

2rc2

(

a +
(a · r)r

r2

)

, (1)

in the present-time coordinates. Herein v is the velocity, a the acceleration of a charge and β = v/c. The physical
meaning of the first and second terms on the rhs of eq. (1) (bound and free electric field, correspondingly) has been
discussed in numerous books and papers (e.g., [1–5]). In particular, it is emphasized that, in general, only the sum of
both components represents a solution of Maxwell equations. As a particular demonstration of this general assertion
we consider the problem in fig. 1, which will be useful in further analysis, too.
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Fig. 1. Interaction of the magnetic dipole µ and the charge q, located on the axis of the dipole.

Within the framework in question, there is an electrically neutral magnetic dipole, which is made of two co-axial
homogeneously charged non-conductive rings of almost equal radius r0 and opposite charges Q. The negatively charged
ring is immovable, whereas the positively charged ring rotates about a common axis of symmetry (the x-axis in fig. 1)
at the angular frequency ω. Then one can easily show that, in general, both the velocity-dependent component Ev

(originated from the first term on the rhs of eq. (1)) and the acceleration-dependent component Ea (the second term
on the rhs of eq. (1)) are not vanishing separately in an arbitrary point {X, 0, 0}, belonging to the x-axis. However,
the total electric field, representing the sum Ev + Ea, is equal to zero.

Now let us consider the same rotating ring in fig. 1 in pure bound field CED, where the charges do not radiate.
This means that for such charges we have to cut off the field terms, which fall off slower than r−2: otherwise, the
EM energy flux across any sphere with radius r would reach a finite value at r → ∞, which signifies a loss of the
radiation energy. In addition, it is legitimate to assume that the EM field in pure bound field CED coincides with
the corresponding velocity-dependent field components in usual CED. With this assumption we come to wipe out the
acceleration-dependent term in eq. (1) and obtain the following expressions for the electric Eb and magnetic Bb fields
produced by the non-radiative charges:

Eb ≈
qr

r3

(

1 +
β2

2
−

3(β · r)2

2cr2

)

, (2)

Bb =
v × Eb

c
, (3)

(hereinafter we supply the quantities obtained within pure bound field CED by the subscript b).
The difference of E in eq. (1) and Eb in eq. (2) does influence the solution of the problem in fig. 1, and the

x-component of the total electric field in the point {X, 0, 0} is no longer vanishing, and equal to

(Etotal)x = β2QX/2(X2 + r0
2)3/2. (4)

However, this result does contradict the momentum conservation law. It is seen, when we put a charge q into the point
{X, 0, 0}. The latter experiences the electric force

Fx = qβ2QX/2(X2 + r0
2)3/2, (5)

whereas the reactive force, exerted on the magnetic dipole by the resting charge q, is equal to zero, were the standard
Lorentz force law assumed. In general, the violation of Newton’s third law in EM interactions is not surprising due
to a contribution of the momentum of EM field into the system total momentum. However, the problem in fig. 1 is
stationary, where the EM momentum does not vary with time. Hence the violation of Newton’s third law in this case
would be unphysical: in particular, if we imagine that the charge and magnetic dipole are fixed on a common platform,
then due to the force (5) the platform begins to accelerate along the x-axis without an external force.

In order to avoid this situation, one needs to restore the equality of the action and reaction. The simplest way to
do this is to modify the Lorentz force law in pure bound field CED and to require that the electric force experienced
by a charge in an external EM field, depends on the square of its velocity. In particular, if the velocity-dependent term
for this force component is identical to that of eq. (2),

F
el(1)
b = QEb

(

1 +
β2

2
−

3(β · r)2

2cr2

)

, (6)
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then the equality of action and reaction is restored for the problem in fig. 1. Here Eb is the external electric field at
the location of a charge.

If one proceeds from the exact expression for the bound electric field of a moving charge q in the present time
coordinates (Heaviside solution [1–3], which we want to keep in pure bound field CED)

Eb =
q(1 − β2)r

(1 − β2 sin2 ϑ)3/2 r3
, (7)

a corresponding modification should be introduced into eq. (6), too, which thus reads

F el
b = f(β2)qEb, f(β2) = (1 − β2) (1 − β2 sin2 ϑ)−3/2. (8)

Here ϑ is the angle between the velocity v and the radius-vector r joining the present position of the charge q and the
point of observation.

Further, it is natural to assume that the same modification in the force law should be made for the magnetic
component, so that we obtain the total force in the form

Fb = f(β2
q )

[

qEb +
q

c
(vq × Bb)

]

, (9)

where vq is the velocity of the test charge, and βq = vq/c.
In what follows, we will deal with a particular case, where the velocity of the charged particle v is orthogonal to

the external electric field Eb, so that ϑ = π/2. In this case f(β2
q ) = γq (γq is the Lorentz factor for the test charge q),

and the electric force component takes the form

F⊥

b = γqqEb (for vq ⊥Eb). (10)

Hence we can introduce the effective electric field Eef = γqEb, experienced by a charge with the forbidden EM
radiation, moving in the external electric field Eb to be orthogonal to its velocity.

2.2 Field equations in pure bound field CED

It is known that only the sum of bound and radiative EM field components represents the solution of the inhomogeneous
Maxwell equations. Our next task is to conjecture their modification in such a way, where the bound component solely
would be the solution of the field equations. In this connection we remind that there still exists a particular case,
where the non-homogeneous Maxwell equations are implemented for bound EM field alone, i.e. the case, where the
source changes move at constant velocities. In this case the operator ∂

∂t = (v · ∇), where v is the constant velocity of
source charge. Hence the Maxwell equations take the form as follows:

∇ · E = 4πρ, ∇ · B = 0, (11a-b)

∇× E = −
1

c
(v · ∇)B, ∇× B =

1

c
(v · ∇)E +

4πj

c
, (11c-d)

where ρ is the charge density, and j = ρv is the current density. Correspondingly, the inhomogeneous wave equation
for the vector potential

�Â = −
4π

c
j, (12)

which is valid in common CED [1–3], is replaced by the equation

∆A −
(v · ∇)2

c2
A = −

4π

c
j, (13)

where � is the d’Alembert operator, and ∆ is the Laplacian. Equation (13) can be also rewritten in the Poisson-like
form [5]

∆A = −
4π

c
j, (14)

where the increments dx, dy, dz in the operator ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 are related by the Lorentz transformation with

the corresponding increments dx′, dy′, dz′ at dt′ = 0; here the primed quantities belong to the rest frame of the source
charge (where j = 0). As known, eqs. (11a-d) and their implication (14) yield the Heaviside solution (7) for an EM
field of moving charge.
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In order to forbid the solutions with the radiation component, we assume that the equations (11) and (14) remain in
force in pure bound field CED for an arbitrary velocity of source charges; we see no other way to withdraw the radiative
EM field component without violation of the continuity equation and the Lorentz invariance of field equations. From
the physical viewpoint, our assumption signifies that in the pure bound field CED framework, the EM field of moving
charge keeps the Heaviside form (7) at its arbitrary velocity.

The obtained field equations (11a-d) being complemented by the force law (9), provide a full description of the
pure bound field CED.

2.3 Energy balance equation and EM momentum in pure bound field CED

In the standard CED, the EM energy flux density is defined through the Poynting theorem [1–4]

∂u/∂t + ∇ · S + j · E = 0 (15)

in the standard designations.
Now we need to obtain the energy balance equation (analog of Poynting theorem in pure bound field CED), using

eqs. (11a-d). We start our analysis with an isolated charged particle, moving with constant velocity v in the frame of
observation. The energy conservation law obviously leads for such a particle to:

d

dt

∫

V

ubdV = 0, (16)

where ub = Eb
2+Bb

2

8π is the EM energy density, and the integration is carried out over the entire free space V . Due to
the independence of v on spatial coordinates, we further write

dub

dt
=

∂ub

∂t
+ (v · ∇)ub =

∂ub

∂t
+ ∇ · (vub), (17)

and combining eqs. (16), (17), we obtain
∂ub

∂t
+ ∇ · (vub) = 0. (18)

This equation exactly coincides with the continuity equation in the fluid mechanics and shows that in the present time
coordinates EM field rigidly propagates with the source charged particle. The same result follows from the Heaviside
expression (7) for an EM field of isolated charge, and in a view of its known physical interpretation (e.g., [1,2]), it does
not create any problems with respect to the causal requirements of classical physics. We also notice that the obtained
eq. (18) for an isolated charged particle is equivalent to eq. (15) (see, e.g., [6]), with the replacement ub → u in pure
bound field CED.

Next we analyze the case of two interacting charges q1 and q2, moving with the velocities v1 and v2, which will
be sufficient for our purposes. Due to the absence of EM radiation in pure bound field CED, we can choose a large
enough spatial volume V enclosing these charges, where the energy flux across the boundary of V due to the bound
EM fields becomes negligible. Therefore, the total time derivative of the EM energy of this system EEM =

∫

V
ubdV

must be equal, with the reverse sign, to the change of kinetic energy of particles:

d

dt

∫

V

ubdV = −q1f(β2
1)v1 · E2 − q2f(β2

2)v2 · E1 = −

∫

V

(f(β2
1)j1 · E2 + f(β2

2)j2 · E1)dV, (19)

where we applied the force law (9), jj = qiδ(ri)vi (i = 1, 2) is the current density for each particle, and

ub =
(f(β2

2)Eb1 + f(β2
1)Eb2)

2 + (f(β2
2)Bb1 + f(β2

1)Bb2)
2

8π
=

f(β2
2)

Eb1
2 + Bb1

2

8π
+ f(β2

1)
Eb2

2 + Bb2
2

8π
+ f(β2

1)f(β2
2)

Eb1 · Eb2 + Bb1 · Bb2

4π
. (20)

For fixed arbitrary (large) volume V , eq. (19) implies the equality

dub

dt
+ f(β2

1)j1 · E2 + f(β2
2)j2 · E1 = 0,

The EM energy density ub in the latter equation represents the function of 7 variables: ub = u(t, r1, r2), where r1, r2

are the present position vectors for each particle. Therefore,

dub

dt
=

∂ub

∂t
+

∂ub

∂r1
·
dr1

dt
+

∂ub

∂r2
·
dr2

dt
=

∂ub

∂t
+ ∇r1

(v1ub) + ∇r2
(v2ub).
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Since the flow of EM energy for each particle obeys eq. (18), now we can determine the flow of the interaction EM
energy, which is the subject of our further interest:

d(ub)in

dt
=

∂(ub)in

∂t
+ ∇r1

(v1(ub)in) + ∇r2
(v2(ub)in), (21)

where, according to eq. (20), (ub)in = f(β2
1)f(β2

2)(Eb1 · Eb2 + Bb1 · Bb2)/4π.
Let us consider the particular case v2 = 0, which is realized, for example, when the charged particle rotates about

another charge with the infinite mass (one-body problem). Hence eq. (21) acquires the form

∂(ub)in/∂t + ∇(v1(ub)in) = 0. (22)

This equation determines the interaction EM energy flux density as (Sb)in = v(ub)in. Then, by definition, the inter-
action EM momentum of the system is

PEM =
1

c2

∫

V

(Sb)indV =
1

c2

∫

V

v1(ub)indV = γ1
U

c2
v1, (23)

where U in the total EM interaction energy, and we have taken into account that f(β2
2) = 1, and f(β2

1) = γ1 for
orthogonal v1 and E2.

Now consider the hydrogenlike atom in the classical treatment of pure bound field CED and assume the mass of the
proton M is finite. In the center-of-mass frame, both particles rotate about their center of mass. Then the interaction
EM momentum acquires the form

PEM = γmγM
U

c2
(vm + vM ), (24)

where vm, vM are the velocities of the electron and proton, respectively.

2.4 equation of motion for charged particles in pure bound field CED (one-body problem)

Now we are in the position of determining within pure bound field CED a equation of motion for a charge e with a
rest mass m, orbiting about a heavy host charge Ze with mass M → ∞, resting in the frame of observation. To handle
this problem, we use the law of conservation of the total momentum

Pm + PM + PEM = const, (25)

where Pm, PM are the mechanical momenta of the orbiting and the host particle, respectively, and PEM is the
interaction EM momentum. Denoting v the velocity of particle e, and using eq. (23), we obtain from eq. (25):

d

dt
γmv +

d

dt

γU

c2
v = −

dPM

dt
, (26)

where
γU = −γZe2/r. (27)

The rhs of eq. (26) represents the force acting on the host particle. For a circular motion of particle e, its velocity v
is orthogonal to the line joining both particles at any moment of time. Hence according to the Heaviside expression,
the electric field Eb of the orbiting particle is equal to (see, eq. (7) for ϑ = π/2)

Eb = γer/r3, (28)

at the location of the host particle (the origin of co-ordinates), where r is the radius of the orbit. Combining eqs. (26)-
(28), we obtain

d

dt
γ

(

m +
U

c2

)

v = γ
Ze2r

r3
. (29)

The equation of motion (29) written within pure bound field CED differs from the corresponding equation for the
one-body problem in usual CED in two points:

– first, the rest mass m is replaced by
mb = (m + U/c2) = mb,
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where we have introduced the factor
b = 1 + U/mc2;

– second, the interaction energy Ze2/r becomes γZe2/r.

This induces the introduction of the effective momentum of the particle e as

Pb = γ(m + U/c2)v = γbmv, (30)

which, in fact, incorporates both the mechanical and EM momenta into the single expression. The same expression
for the momentum of bound particle has been introduced by one of the authors in [7,8].

The Hamilton function of the system represents the sum of a kinetic energy and a potential energy (27). Hence

H =

(

c
√

P 2
b + m2b2c2 − mbc2

)

− γ
Ze2

r
, (31)

where Pb is defined by eq. (30).
Now we apply a weak relativistic limit, where the terms of the order (v/c)k are ignored, if k > 2. Expanding

eq. (31) to the order (v/c)2, one gets

H =
P 2

b

2mb
− γ

Ze2

r
−

P 4
b

8m3b3c2
. (32)

Thus, the Hamilton function, obtained for the bound charged particles in a weak relativistic limit of pure bound
field CED, does differ from the corresponding Hamilton function in usual CED (see, e.g., [1]) by the replacements

m → mb, Ze2/r → γZe2/r. (33a-b)

In addition, we take into account that the electric field of the nucleus in the one-body problem is equal to E =
−∇U/e, and eq. (33b) implies one more replacement

E → γE. (33c)

We again emphasize that the appearance of the replacements (33a-c) is induced by the requirements of energy-
momentum conservation in the absence of radiative EM field component. Our principal idea is to extend eqs. (33) to
quantum bound systems in the stationary energy states, which guarantees the implementation of energy-momentum
conservation for such systems in the absence of EM radiations.

3 Quantum one-body problem

In the quantum domain, the inhomogeneous wave equation (12) is commonly adopted as the counterpart to the

classical field equations, where Â is understood as operator, and the current density j is appropriately redefined (see,
e.g., [9]). However, like in the classical case, this equation is implemented only for the sum of the bound and radiating

components of the vector potentials. This means that for the total vector potential Â = Âb +Âf (where the subscripts
b and f denote bound and radiating components of the vector potential, respectively), in general1,

�Âb �= −
4π

c
j, �Âf �= −

4π

c
j.

Therefore, eq. (12) is not applicable to quantum systems of bound charges with the prohibited radiation, where

Â = Âb. It seems surprising that, to our recollection, this fact was not commented before, and now we assert, as
the novel postulate, that for bound non-radiating charges eq. (12) must be replaced by eq. (14) (where A again
represents the operator). Hence the classical system, represented by non-radiating interacting charges and described
by the pure bound field CED, is exhibited as an actual classical analog of quantum bound charges, which do not
radiate in stationary energy states.

As we have seen above, the elimination of the radiative EM field for the system of interacting classical charges
implies the appropriate modifications in the Hamiltonian (expressed by eqs. (32)), which aim to secure the total
energy-momentum conservation law in the absence of EM radiations. Equations (33) give the simple rules for the

1 The decomposition of the four-potential into bound and radiating components has been achieved in ref. [10]. We also remind
that the homogeneous Maxwell equations can be implemented separately for bound and radiating EM field components, i.e.

�Âb = 0, �Âf = 0.
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introduction of the appropriate modifications in quantum mechanical equations for bound non-radiating charges. Of
course, such modifications anyway represent a postulate, and only the experiments can validate its correctness.

The replacements similar to (33) can be directly introduced into the Dirac equation in the standard representation
(see, e.g., [9,11]) with a corresponding modification of its solution. However, the approach based on perturbation
theory occurs more illustrative for a better understanding of the physical implications induced by pure bound field
theory. In addition, such an approach becomes fruitful for further introduction of corresponding corrections to the
atomic energy levels, discussed in part II of this paper.

Thus we start with the Dirac equation (e.g., [11]) for the electron bound in the external EM field (when its total
energy E < mc2), introducing the quantum counterparts of the replacements (33):

(

ih̄
∂

∂t
+ mbnc2

)

ψ =
[

cα
(

P̂b −
e

c
Ab

)

+ βmbnc2 + eγnU
]

ψ, (34)

where ψ = ( ϕ
χ ) is the wave function, α = ( 0 σ

σ 0 ), β = ( 1 0
0 −1 ), P̂b = −ih̄∇ is the momentum operator, Ab is the

vector potential, σ is the Pauli matrix, and bn, γn are some coefficients, which represent quantum analogs of the
corresponding classical factors b, γ. Thus these coefficients are aimed to reflect the non-radiative nature of the EM
field of bound electron within the total momentum conservation constraint and their divergence from unity has the
order of magnitude (Zα)2 and higher. Hence their introduction in the Dirac equation does not affect the gross structure
of the energy levels, characterized by the principal quantum number n. These coefficients, being constant for any fixed
energy level, provide the Lorentz invariance and other symmetries of relativistic quantum mechanics, when the non-
relativistic limit is no longer assumed. We will see below that the coefficients bn, γn are different in each stationary
energy state, and for convenience we label them by the subscript n.

Further, we imply the presence of electric field only, putting A = 0. In addition, for a stationary energy state
we replace the operator ih̄∂/∂t by the energy E of this state. Then for the functions ϕ, χ we obtain the system of
equations as follows:

(E − eγnU)ϕ = c(σ · P̂b)χ, (E − eγnU + 2mbnc2)χ = c(σ · P̂b)ϕ,

with the solution with respect to ϕ

(E − eγnU)ϕ =
c(σ · P̂b)ϕ

(E − eγnU + 2mbnc2)
. (35)

In order to derive the equation analogous to the Schrödinger equation in the weak relativistic limit, we introduce
the function ψ, for which the integral

∫

|ψ2|dV over the entire space does not depend on time. The relationship between
the functions ψ and ϕ (see, e.g., [11]) modified due to the substitution (33a) takes the form

ψ =

(

1 +
P̂ 2

b

8m2b2
nc2

)

ϕ. (36)

Substituting eq. (36) into eq. (35), and implementing the straightforward calculations (see, e.g., [11]), we present
the equation for the function ψ in the Schrödinger form Hψ = Eψ with the Hamiltonian

H =
P 2

b

2mbn
− γn

Ze2

r
−

P 4
b

8m3b3
nc2

−
eh̄

2m2b2
nc2

s · (γnEb × Pb) −
eh̄2

8m2b2
nc2

(∇ · γnEb), (37)

where s is the spin operator.
The first three terms of this operator represent a quantum counterpart of the Hamilton function (32), the fourth

term describes the spin-orbit interaction, while the last term corresponds to the contact interaction. In this equation
we leave out only the terms, which contain the corrections of the pure bound field theory at least to the order (v/c)−4,
as far as the corrections to the higher order (v/c)−6 are insignificant at the present measuring accuracy in atomic
physics.

A corresponding Dirac-Coulomb equation acquires the form

(

P 2
b

2mbn
− γn

Ze2

r
−

P 4
b

8m3b3
nc2

−
eh̄s · (γnEb × Pb)

2m2b2
nc2

−
eh̄2(∇ · γnEb)

8m2b2
nc2

)

ψ(r, ϑ, ϕ) = Wψ(r, ϑ, ϕ), (38)

where ϑ, ϕ being the polar and azimuthal angles, correspondingly.
In order to solve eq. (38), we apply the substitution

r = r′/bnγn, (39)
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which allows us to rewrite eq. (38) in the convenient form

[

Ĥ0(r
′) + V̂ (r′)

]

ψ(r′, ϑ, ϕ) = W ′ψ(r′, ϑ, ϕ), (40)

where Ĥ0(r
′) = −

h̄2
∇

2

r′

2m − Ze2

r′
is the conventional non-relativistic Schrödinger operator, expressed via r′-coordinates,

whereas

V̂ (r′) = bnγ4
n

(

−
p̂b(r

′)4

8m3c2
−

eh̄ŝ · (γnE(r′) × p̂b(r
′))

2m2c2
−

eh̄2(∇r′ · γnE(r′))

8m2c2

)

, (41)

is the perturbation, and W ′ = W/bnγ2
n. Transforming eq. (38) into eq. (41), we used the equalities ∇r = bbγn∇r′ ,

E(r) = b2
nγ2

nE(r′).
Thus, applying the approach of perturbation theory, we first observe that the standard Schrödinger equation

(

−
h̄2∇2

r′

2m
−

Ze2

r′

)

ψ(r′, ϑ, ϕ) = W ′ψ(r′, ϑ, ϕ),

gives the known solution for the stationary energy levels

W ′

n = −
mZ2e4

2h̄2 ·
1

n2
,

as well as the standard Schrödinger-Coulomb wave function ψn(r′, ϑ, ϕ) for the hydrogenlike atom. Hence we can
apply the known relationships [12]:

v2
n = (Zα)2c2/n2, 1/r′n = (Zα/n2)mc/h̄,

and determine the factors bn, γn as follows:

γn =
(

1 − β2
n

)−1/2

= (1 − (Zα)2/n2)−1/2, bn = 1 −
Ze2

mc2
(1/rn) = 1 − (Zα)2/n2, (42a-b)

for each stationary energy state n. Hence we arrive at the equality

bnγ2
n = 1, (43)

at least to the order (Zα)2.
In view of eq. (43), we get W ′ = W , while the perturbation operator becomes

V̂ (r′) = γ2
n

(

−
p̂b(r

′)4

8m3c2
−

eh̄ŝ · (E(r′) × p̂b(r
′))

2m2c2
−

eh̄2(∇r′ · E(r′))

8m2c2

)

. (44)

Taking also into account that the perturbation term (44) itself has order of magnitude (Zα)4, we conclude that our
corrections to this term, expressed via the coefficient γn (42a), appear at least in the order (Zα)6. Hence it is seen
that eq. (40) yields the same gross and also fine structure for the atomic energy levels of light hydrogenic atoms, like
in the common approach, i.e. the perturbation energy is expressed by the common equation

(∆Wb)n = −
mc2(Zα)4

2n3

(

1

j + 1/2
−

3

4n

)

, (45)

in the standard designations.
Concerning the non-relativistic wave function, we point out that it acquires the standard Schrödinger form in

the r′-coordinates, related to the laboratory coordinates r by eq. (39). Thus, due to the normalization requirement
induced by the scaling transformation (39),

ψ(r, ϑ, ϕ) = bn
3/2γn

3/2ψ(r′, ϑ, ϕ). (46)

In what follows, we name the theory, which explicitly takes into account the non-radiative nature of the EM field of
bound charges in stationary energy states, as Pure Bound Field Theory (PBFT) and, in the next section, we analyze
the two-body problem within our approach.
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4 equation of motion for bound charged particles (two-body problem) and the structure of
energy levels of hydrogenic atoms

In this section we consider the hydrogenlike atom with the finite mass M of the nucleus. Considering first the classical
case, we substitute into eq. (25) the EM momentum according to eq. (24). Hence the classical equation of motion
acquires the form

d

dt
γm(m + γMU/c2)vm = −

d

dt
γM (M + γmU/c2)vM , (47)

where the EM interaction energy takes the form

U =
1

4π

∫

V

(Em · EM + Bm · BM )dV. (48)

Equation (47) allows introducing the effective momenta

Pbm = γm(m + γMU/c2)vm, PbM = γM (M + γmU/c2)vM , (49a-b)

the effective masses

mb = m(1 + γMU/mc2) = mbm, Mb = M(1 + γmU/Mc2) = MbM , (50a-b)

and the effective interaction energy
Ub = γmnγMnU, (50c)

of both particles. Herein we have introduced the quantities

bm =

(

1 +
γMU

mc2

)

, bM =

(

1 +
γmU

Mc2

)

, γm = (1 − vm
2/c2)−1/2, γM = (1 − vM

2/c2)−1/2. (51a-d)

Introducing the reduced velocity vR for the two-body problem, eqs. (51c-d) can be also presented in the form

γm =

(

1 −
vR

2

c2

M2

(m + M)2

)−1/2

, γM =

(

1 −
vR

2

c2

m2

(m + M)2

)−1/2

. (51e-f)

Then the Hamilton function, written in the weak relativistic limit, becomes

H =
P 2

bm

2mbm
+

P 2
bM

2MbM
+

P 4
bm

8m3bm
3 +

P 4
bM

8M3bM
3 − γmγM

Zq2

r
, with Pbm = −PbM .

Acting in the same way, like in the previous section, we have to introduce the appropriate modifications in corre-
sponding quantum-mechanical equations.

The approach based on the Dirac equation is not directly applicable to the two-particle case, where we should
address either to the Bethe-Salpeter equation, or the Breit equation without external field [9], or to their modifications.
Though the Breit equation is not fully Lorentz-invariant and represents an approximation, it is the most convenient
and illustrative for the analysis of the PBFT corrections, resulting as a consequence of the replacements (51a-f). Such
a repostulated Breit equation for the Schrödinger-like wave function ψ(r) takes the form

[

p2
b

2mbmn
+

p2
b

2Mbmn
− γmnγMn

Ze2

r
−

p4
b

8m3bmn
3c2

−
p2

b

8M3bMn
3c2

+ Ub(pbm,pbM , r)

]

ψ(r) = Wψ(r), (52)

where W is the energy, and the term Ub(pbm,pbM , r) is equal to

Ub (pbm,pbM , r) = −
πZe2h̄2

2c2

(

1

bmn
2m2

+
1

bMn
2M2

)

δ(r) −
Ze2

2bmnbMnmMr

(

pbm · pbM +
r · (r · pbm)pbM

r2

)

−
Ze2h̄γmnγMn

4bmn
2m2c2r3

(r × pbm) · σm+
Ze2h̄γmnγMn

4bMn
2M2c2r3

(r × pbM ) · σM−
Ze2h̄γmnγMn

2bmnbMnmMc2r3
((r × pbm) · σM−(r×pbM ) · σm)

+
Ze2h̄γmnγMn

4bmnbMnmMc2

[

σm · σM

r3
− 3

(σm · r)(σM · r)

r3
−

8π

3
σm · σMδ(r)

]

. (53)
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We point out that without the introduced the PBFT factors bmn, bMn, γmn and γMn, eq. (52) acquires its
common form [11]. Thus the presence of these factors in eq. (52) determines the PBFT corrections to the Dirac-recoil
contribution and spin-spin interval.

In order to solve eq. (52), it is convenient to apply the substitution

r = r′/(bmnbMnγmnγMn), (54)

which allows us to present the Hamiltonian in eq. (52) as the sum of Schrödinger-like term and perturbation. Indeed,
taking into account that p2

b = −h̄2∇2
r = −bmn

2bMn
2γmn

2γMn
2h̄2∇2

r′ , we transform eq. (52) as follows:

[

−
h̄2∇2

r′bMn

2m
−

h̄2∇2
r′bmn

2M
−

Ze2

r′
+

1

bmnbMnγmn
2γMn

2

(

−
p4

b

8m3bmn
3c2

−
p2

b

8M3bMn
3c2

+ Ub(pbm,pbM , r′)

)]

ψ(r′) =

W ′ψ(r′), (55)

where
W ′ = W/(bmnbMnγmn

2γMn
2). (56)

The obtained eq. (55) completed by the expressions (53), (54) and (56), represents the basic equation for the
quantum two-body problem within the framework of the PBFT. Here one should recall that eq. (55) itself, like the
source Breit equation, is semi-relativistic, and it is valid to the order (Zα)4. At the same time, the factors bmn, bMn,
γmn and γMn, being explicitly determined to the orders (Zα)2 and (Zα)4 (see below), allow us to analyze the specific
PBFT corrections to the order (Zα)6, which correspond to the scale of hyperfine interactions. The determination of
these corrections is the next goal of our analysis, but, first of all, let us show that eq. (55) yields the same gross and
fine structure of the atomic energy levels, as the one furnished by the common approach.

In the zeroth approximation, when the terms of order (v/c)2 and higher are ignored, we get from eq. (55) the
Schrödinger equation expressed in r′-coordinates:

(

−
h̄2∇2

r′

2mR
−

Ze2

r′

)

ψ(r′) = Wψ(r′),

where mR = mM/(m + M) is the reduced mass. Hence we obtain the well-known solution

W0n = −
mRc2(Zα)2

2n2
,

along with the common Schrödinger wave function expressed via r′-coordinates. This result allows us to obtain the
coefficients bmn, bMn, γmn, γMn at least to the order (Zα)2, based on their respective classical limits (51a-f), taking
into account the known relationships (e.g., [12])

U

mc2
= −

Ze2

rmc2
= −

Ze2

rmRc2

M

M + m
= −

(Zα)2

n2

M

M + m
, (57a)

U

Mc2
= −

Ze2

rMc2
= −

Ze2

rmRc2

m

M + m
= −

(Zα)2

n2

m

M + m
, (57b)

vm
2

c2
=

vR
2

c2

M2

(M + m)2
=

(Zα)2

n2

M2

(M + m)2
,

vM
2

c2
=

vR
2

c2

m2

(M + m)2
=

(Zα)2

n2

m2

(M + m)2
. (57c-d)

Hence, via the comparison of eqs. (57a-d) with eqs. (51a-b, e-f), we obtain the factors bmn, bMn, γmn, γMn to the
accuracy (Zα)2 as follows:

bmn =

(

1 −
(Zα)2

n2

M

M + m

)

, bMn =

(

1 −
(Zα)2

n2

m

M + m

)

, (58a-b)

γmn =

[

1 −
(Zα)2

n2

M2

(m + M)2

]−1/2

, γMn =

[

1 −
(Zα)2

n2

m2

(m + M)2

]−1/2

. (58c-d)

Further on, using eqs. (58a-d), we derive the product

bmnbMnγmn
2γMn

2 = 1 −
(Zα)2

n2

2mM

(M + m)2
, (59)

to the accuracy of calculations (Zα)2.
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Applying equations (58), (59), as well as the equality [11]

p2 = 2mR

(

Won +
Ze2

r

)

= mR
2c2(Zα)2/n2, (60)

we find that to the accuracy of calculations (Zα)4,

p2
b(r

′)bMn

2m
+

p2
b(r

′)bmn

2M
−

W

bmnbMnγmn
2γMn

2
=

p2(r′)

2m
− W . (61)

Substituting this equality into eq. (55), and ignoring the PBFT factors bmn, bMn, γmn, γMn in the terms of the order
(Zα)4, we obtain

[

−
h̄2∇2

r′

2mR
−

Ze2

r′
+

(

−
p4

8m3c2
−

p4

8M3c2
+ U(pm,pM , r′)

)]

ψ(r′) = Wψ(r′), (62)

where the term U(pm,pM , r′) differs from the term Ub(pm,pM , r′) in eq. (55) by the omission of PBFT factors bmn,
bMn, γmn, γMn.

Further excluding the spin-spin interaction in the expression for U(pm,pM , r′) (last term on the rhs of eq. (53)),
we arrive at the common solution for the Dirac-Recoil (DR) contribution to the energy levels, written to the order
(Zα)4 [11]:

(

WDR
b

)

nlj
= mRc2

{

[f(n, j) − 1] −
mR

2(m + M)
[f(n, j) − 1]2

}

, (63)

where f(n, j) ≈ 1− (Zα)2

2n2 − (Zα)4

2n3 ( 1
j+1/2 − 3

4n ), and j is the quantum number of total angular momentum (j = l + s, l

is the angular momentum, and s the electron’s spin).
Thus the corrections of the PBFT to the Dirac-recoil contribution may emerge at least in the order (Zα)6, which

corresponds to hyperfine interactions, and which will be determined in part II of this paper.

5 Hyperfine splitting of energy levels due to spin-spin interaction in hydrogen and heavier
atoms

Now we show that the corrections to the term of spin-spin interaction (WHFS)b within the PBFT are well below the
present experimental uncertainty.

First we analyze the contribution of spin-spin interaction into the Breit potential, which, in the PBFT, has the
form

(Vb(r))s-s =
1

bmnbMnγmn
2γMn

2

Ze2h2γmnγMn

4mbmnMbMnc2

(

σm · σM

r3
− 3

(σm · r)(σM · r)

r5
−

8π

3
δ(r)

)

, (64)

(the last term of eq. (53)). Being expressed via r′-coordinates, this operator reads

(Vb(r
′))s-s = bmnbMnγmn

2γMn
2 e2h2

4mMc2

(

σm · σM

r′3
− 3

(σm · r′)(σM · r′)

r′5
−

8π

3
δ(r′)

)

, (65)

where we have used eq. (54) and the relationship δ(r) = bmn
3bMn

3γmn
3γMn

3δ(r′). Designating

(V (r′))s-s =
e2h2

4mMc2

(

σm · σM

r′3
− 3

(σm · r′)(σM · r′)

r′5
−

8π

3
δ(r′)

)

,

(the common Hamiltonian of spin-spin interaction expressed via r′-coordinates), and using eq. (59), we obtain

(Vb(r
′))s-s =

(

1 −
(Zα)2

n2

2mM

(M + m)2

)

(V (r′))s-s. (66a)

This relationship is also valid for the energy of spin-spin interaction, obtained via the averaging of operators
(Vb(r

′))s-s and (V (r′))s-s with the wave function ψ(r′):

(Wb)s-s =

(

1 −
(Zα)2

n2

2mM

(M + m)2

)

Ws-s. (66b)
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Thus the term

δ(Wb)s-s = −
(Zα)2

n2

2mM

(M + m)2
Ws-s (67)

determines the PBFT correction to hyperfine splitting.
For the 1S state of hydrogen, the term α2 2mM

(M+m)2 Ws-s of eq. (67) itself is less than 100Hz (where we have used the

measured value Ws-s = 1420 405.751 768(1) kHz [13]) and is many times smaller than the nuclear-structure corrections
to the 1S hyperfine splitting, which vary from tens to hundreds of kHz [14–16]. Thus, for hydrogen, the PBFT correction
to spin-spin splitting occurs negligible, and we put

(Wb)
H
s-s = WH

s-s, (68)

within the range of the present uncertainty in calculation of WH
s-s.

For heavier atoms, the PBFT correction (67) becomes smaller, whereas the nuclear structure effects are larger.
Hence the correction (67) can be well ignored for all such atoms, too.

The case of leptonic atoms requires a separate analysis, which will be presented in part II of the present paper.

6 Discussion

Thus, the qualitative difference between classical and quantum systems of bound charged particles with respect to their
ability to emit electromagnetic radiation, makes a transition from the classical to quantum description of such systems
more complicated than it was originally conceived. Our principal assertion is that the Hamilton function written for
interacting classical charges should be modified before constructing a corresponding Hamiltonian for wave-like bound
particles. This assertion is closely related to the non-applicability of the non-homogeneous wave equation (12) to
quantum bound systems and to the requirement of energy-momentum conservation for such systems, when their EM
radiation is forbidden. Hence a logically non-contradictory transition from classical to quantum description of bound
charges should proceed from the classical Hamilton function to its quantum counterpart, where both bear a common
fundamental structure of the EM field, consisting of only the bound field component (eq. (14)). In order to describe
such a transition at a mathematical level, we have developed a pure bound field CED, where the motion of charges is
described in a classical way, but their EM radiation is forbidden. The Hamilton function written within such a pure
bound field CED differs from the conventional Hamilton function in standard CED in two points: the rest masses m
and M of two interacting particles are replaced by the effective rest mass parameters m + γMU/c2, M + γmU/c2,
correspondingly, and the interaction energy is replaced by γmγMU . The appearance of the Lorentz factors γm and
γM in these expressions reflects the dynamics of particles in pure bound field CED under the energy-momentum
conservation constraint.

The introduction of the masses mb and Mb into the corresponding Hamilton operator with the accompanied
replacement U → γmγMU , leads us to the modified Dirac-Coulomb equation for the quantum one-body problem, and
to the modified Breit equation without external field for the quantum two-body problem, giving the results that follow:

– the gross structure of the hydrogenlike atoms is not influenced by the PBFT, because the PBFT corrections to
the equations of atomic physics have the order of magnitude (Zα)2 and they cannot affect the gross structure by
definition;

– the Dirac-recoil contribution to the energy levels also coincides with the corresponding expression in the standard
theory, at least to the order of magnitude (Zα)4, eq. (63);

– the PBFT correction to the hyperfine spin-spin interaction for the hydrogen and heavier atoms (67) occurs much
less that the present calculation uncertainty and thus can be ignored.

This is an important step of validation of the PBFT, giving the required coincidence of the fine structure and
spin-spin interaction with well-proved experimental data.

We emphasize that the results listed above have been obtained with the scaling transformation (54), which can
be interpreted as the increase of form-factors for hydrogenic atoms by bmnbMnγmnγMn times in comparison with the
commonly adopted value. In the classical analogy, this effect is explained by the reduction of the effective rest masses
of orbiting particles by bm and bM times, correspondingly (see eq. (50)), that causes an increase of the radius of their
orbits. In part II we will further explore the physical meaning of the transformation (54) and its implications. At
the same time, one should take into account that the product bmnbMnγmnγMn differs from unity in the order (Zα)2

and higher, which is well below the present experimental uncertainty in the measurement of form-factors for light
hydrogenic atoms.

Further, it would be fair to bring up that this work was inspired by an idea of one of the authors (TY) that the
rest mass of any object bound to a given field should decrease as much as the mass equivalent of the “static binding
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energy” coming into play (and this, for classical particles, already at rest) [7,8]. However, a detailed discussion of this
idea is beyond the scope of the present contribution.

As a final remark, it is worth emphasizing that the purely bound field CED was conceived along with a single
purpose: using standard quantization scheme, to take explicitly into account a modification of the EM field of charged
particle in bound quantum state. Thus, such a bound field theory is not a substitution for the conventional CED and
hence does not imply any change of the recognized limits of CED applicability. Rather our goal is to introduce into
the Hamiltonian the appropriate corrections, which reflect a non-radiative nature of the EM fields of bound wave-like
particles.

In part II of this paper we will show that the PBFT evokes significant corrections to the energy levels computed
within QED at the range of hyperfine contributions to the atomic energy levels. As an important outcome, we will
remove the long-standing discrepancies between theory and experiment in the physics of light hydrogenic atoms: 1S-2S
interval for positronium, hyperfine spin-spin splitting of 1S-level in positronium, classic Lamb shift and the ground-
state Lamb shift in the hydrogen. In particular, we will show that the proton charge radius, derived within the PBFT
framework, is in perfect agreement with the result of the latest (and the most precise) measurement via the 2S-2P
Lamb shift in muonic hydrogen [17].
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